Presynaptic NMDA receptor mechanisms for enhancing spontaneous neurotransmitter release.
نویسندگان
چکیده
NMDA receptors (NMDARs) are required for experience-driven plasticity during formative periods of brain development and are critical for neurotransmission throughout postnatal life. Most NMDAR functions have been ascribed to postsynaptic sites of action, but there is now an appreciation that presynaptic NMDARs (preNMDARs) can modulate neurotransmitter release in many brain regions, including the neocortex. Despite these advances, the cellular mechanisms by which preNMDARs can affect neurotransmitter release are largely unknown. Here we interrogated preNMDAR functions pharmacologically to determine how these receptors promote spontaneous neurotransmitter release in mouse primary visual cortex. Our results provide three new insights into the mechanisms by which preNMDARs can function. First, preNMDARs can enhance spontaneous neurotransmitter release tonically with minimal extracellular Ca(2+) or with major sources of intracellular Ca(2+) blocked. Second, lowering extracellular Na(+) levels reduces the contribution of preNMDARs to spontaneous transmitter release significantly. Third, preNMDAR enhance transmitter release in part through protein kinase C signaling. These data demonstrate that preNMDARs can act through novel pathways to promote neurotransmitter release in the absence of action potentials.
منابع مشابه
Spontaneous neurotransmission signals through store-driven Ca2+ transients to maintain synaptic homeostasis
Spontaneous glutamate release-driven NMDA receptor activity exerts a strong influence on synaptic homeostasis. However, the properties of Ca(2+) signals that mediate this effect remain unclear. Here, using hippocampal neurons labeled with the fluorescent Ca(2+) probes Fluo-4 or GCAMP5, we visualized action potential-independent Ca(2+) transients in dendritic regions adjacent to fluorescently la...
متن کاملSelective inhibition of spontaneous but not Ca2+ -dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices.
Two main forms of neurotransmitter release are known: action potential-evoked and spontaneous release. Action potential-evoked release depends on Ca2+ entry through voltage-gated Ca2+ channels, whereas spontaneous release is thought to be Ca2+ -independent. Generally, spontaneous and action potential-evoked release are believed to use the same release machinery to release neurotransmitter. This...
متن کاملFunctional and immunocytochemical identification of glutamate autoreceptors of an NMDA type in crayfish neuromuscular junction.
Functional and immunocytochemical identification of glutamate autoreceptors of an NMDA type in crayfish neuromuscular junction. J. Neurophysiol. 80: 2893-2899, 1998. N-Methyl--aspartate (NMDA) reduces release from crayfish excitatory nerve terminals. We show here that polyclonal and monoclonal antibodies raised against the mammalian postsynaptic NMDA receptor subunit 1 stain specifically the pr...
متن کاملEndogenous NMDA-receptor activation regulates glutamate release in cultured spinal neurons.
N-methyl--aspartate (NMDA) receptor activation plays a fundamental role in the genesis of electrical activity of immature neurons and may participate in activity-dependent aspects of CNS development. A recent study has suggested that NMDA-receptor-mediated glutamatergic neurotransmission might occur in the developing spinal cord via activation of nonsynaptic receptors, but the details of NMDA-r...
متن کاملSelective inhibition of spontaneous but not Ca-dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices
Glitsch, Maike. Selective inhibition of spontaneous but not Ca dependent release machinery by presynaptic group II mGluRs in rat cerebellar slices. J Neurophysiol 96: 86–96, 2006. First published April 12, 2006; doi:10.1152/jn.01282.2005. Two main forms of neurotransmitter release are known: action potential-evoked and spontaneous release. Action potential-evoked release depends on Ca entry thr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 18 شماره
صفحات -
تاریخ انتشار 2013